Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
authorea preprints; 2024.
Preprint in English | PREPRINT-AUTHOREA PREPRINTS | ID: ppzbmed-10.22541.au.170668577.76388463.v1

ABSTRACT

Pulmonary alveolar proteinosis (PAP) is a rare syndrome due to increased production or decreased clearance of surfactant in alveoli and terminal bronchi that cause hypoxemic respiratory insufficiency. Here we present a patient with past medical history of PAP whose disease was exacerbated by superimposed COVID-19 pneumonia. He underwent whole pulmonary lavage (WPL). Evaluation of the viral count of the first and the last lavage of the left lung showed viral load in the alveolar space dropped by approximately 10-folds, however the magnitude of the viral load was substantial in both lavage samples. Whole pulmonary lavage may be used as a treatment option on patients with COVID pneumonia superimposed on a pulmonary alveolar proteinosis (PAP) exacerbation.


Subject(s)
Adenocarcinoma, Bronchiolo-Alveolar , Pneumonia , Pulmonary Alveolar Proteinosis , Rare Diseases , COVID-19 , Respiratory Insufficiency
2.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.05.24.542181

ABSTRACT

Current understanding of viral dynamics of SARS-CoV-2 and host responses driving the pathogenic mechanisms in COVID-19 is rapidly evolving. Here, we conducted a longitudinal study to investigate gene expression patterns during acute SARS-CoV-2 illness. Cases included SARS-CoV-2 infected individuals with extremely high viral loads early in their illness, individuals having low SARS-CoV-2 viral loads early in their infection, and individuals testing negative for SARS-CoV-2. We could identify widespread transcriptional host responses to SARS-CoV-2 infection that were initially most strongly manifested in patients with extremely high initial viral loads, then attenuating within the patient over time as viral loads decreased. Genes correlated with SARS-CoV-2 viral load over time were similarly differentially expressed across independent datasets of SARS-CoV-2 infected lung and upper airway cells, from both in vitro systems and patient samples. We also generated expression data on the human nose organoid model during SARS-CoV-2 infection. The human nose organoid-generated host transcriptional response captured many aspects of responses observed in the above patient samples while suggesting the existence of distinct host responses to SARS-CoV-2 depending on the cellular context, involving both epithelial and cellular immune responses. Our findings provide a catalog of SARS-CoV-2 host response genes changing over time.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome , Lung Diseases
3.
researchsquare; 2023.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2978272.v1

ABSTRACT

Current understanding of viral dynamics of SARS-CoV-2 and host responses driving the pathogenic mechanisms in COVID-19 is rapidly evolving. Here, we conducted a longitudinal study to investigate gene expression patterns during acute SARS-CoV-2 illness. Cases included SARS-CoV-2 infected individuals with extremely high viral loads early in their illness, individuals having low SARS-CoV-2 viral loads early in their infection, and individuals testing negative for SARS-CoV-2. We could identify widespread transcriptional host responses to SARS-CoV-2 infection that were initially most strongly manifested in patients with extremely high initial viral loads, then attenuating within the patient over time as viral loads decreased. Genes correlated with SARS-CoV-2 viral load over time were similarly differentially expressed across independent datasets of SARS-CoV-2 infected lung and upper airway cells, from both in vitro systems and patient samples. We also generated expression data on the human nose organoid model during SARS-CoV-2 infection. The human nose organoid-generated host transcriptional response captured many aspects of responses observed in the above patient samples, while suggesting the existence of distinct host responses to SARS-CoV-2 depending on the cellular context, involving both epithelial and cellular immune responses. Our findings provide a catalog of SARS-CoV-2 host response genes changing over time.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome , Lung Diseases
4.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.07.28.453844

ABSTRACT

There is an unmet need for pre-clinical models to understand the pathogenesis of human respiratory viruses; and predict responsiveness to immunotherapies. Airway organoids can serve as an ex-vivo human airway model to study respiratory viral pathogenesis; however, they rely on invasive techniques to obtain patient samples. Here, we report a non-invasive technique to generate human nose organoids (HNOs) as an alternate to biopsy derived organoids. We made air liquid interface (ALI) cultures from HNOs and assessed infection with two major human respiratory viruses, respiratory syncytial virus (RSV) and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Infected HNO-ALI cultures recapitulate aspects of RSV and SARS-CoV-2 infection, including viral shedding, ciliary damage, innate immune responses, and mucus hyper-secretion. Next, we evaluated the feasibility of the HNO-ALI respiratory virus model system to test the efficacy of palivizumab to prevent RSV infection. Palivizumab was administered in the basolateral compartment (circulation) while viral infection occurred in the apical ciliated cells (airways), simulating the events in infants. In our model, palivizumab effectively prevented RSV infection in a concentration dependent manner. Thus, the HNO-ALI model can serve as an alternate to lung organoids to study respiratory viruses and testing therapeutics.


Subject(s)
COVID-19
5.
authorea preprints; 2021.
Preprint in English | PREPRINT-AUTHOREA PREPRINTS | ID: ppzbmed-10.22541.au.162117356.65294411.v1

ABSTRACT

Since the start of the SARS-CoV-2 pandemic, it has been difficult to differentiate between SARS-CoV-2 re-infection and prolonged RNA shedding. In this report, we identified patients with positive rtPCR results for SARS-CoV-2 ≥70 days apart. Clinical and laboratory data were collected and criteria were applied to discern whether the presentation was consistent with SARS-CoV-2 re-infection or prolonged viral RNA shedding. Eleven individuals met the initial testing criteria, of which, seven met at least one criteria for re-infection and four were consistent with prolonged RNA shedding. These data demonstrate the need for criteria to differentiate SARS-CoV-2 re-infection from prolonged RNA shedding.

6.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.11.421057

ABSTRACT

The newly emerged and rapidly spreading SARS-CoV-2 causes coronavirus disease 2019 (COVID-19). To facilitate a deeper understanding of the viral biology we developed a capture sequencing methodology to generate SARS-CoV-2 genomic and transcriptome sequences from infected patients. We utilized an oligonucleotide probe-set representing the full-length genome to obtain both genomic and transcriptome (subgenomic open reading frames [ORFs]) sequences from 45 SARS-CoV-2 clinical samples with varying viral titers. For samples with higher viral loads (cycle threshold value under 33, based on the CDC qPCR assay) complete genomes were generated. Analysis of junction reads revealed regions of differential transcriptional activity and provided evidence of expression of ORF10. Heterogeneous allelic frequencies along the 20kb ORF1ab gene suggested the presence of a defective interfering viral RNA species subpopulation in one sample. The associated workflow is straightforward, and hybridization-based capture offers an effective and scalable approach for sequencing SARS-CoV-2 from patient samples.


Subject(s)
COVID-19 , Infections
7.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.11.27.20238980

ABSTRACT

As the COVID-19 pandemic continues to affect communities across the globe, the need to contain the spread of the outbreaks is of paramount importance. Wastewater monitoring of the SARS-CoV-2 virus, the causative agent responsible for COVID-19, has emerged as a promising tool for health officials to anticipate outbreaks. As interest in wastewater monitoring continues to grow and municipalities begin to implement this approach, there is a need to further identify and evaluate methods used to concentrate SARS-CoV-2 virus RNA from wastewater samples. Here we evaluate the recovery, cost, and throughput of five different concentration methods for quantifying SARS-CoV-2 virus RNA in wastewater samples. We tested the five methods on six different wastewater samples. We also evaluated the use of a bovine coronavirus vaccine as a process control and pepper mild mottle virus as a normalization factor. Of the five methods we tested head-to-head, we found that HA filtration with bead beating performed the best in terms of sensitivity and cost. This evaluation can serve as a guide for laboratories establishing a protocol to perform wastewater monitoring of SARS-CoV-2. HighlightsO_LIFive methods for concentrating SARS-CoV-2 RNA from wastewater evaluated C_LIO_LIMethod performance characterized via recovery, cost, throughput, and variability C_LIO_LIHA filtration with bead beating had highest recovery for comparatively low cost C_LIO_LIBovine coronavirus, pepper mild mottle virus assessed as possible recovery controls C_LI


Subject(s)
COVID-19
8.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.11.04.20226191

ABSTRACT

Wastewater monitoring for SARS-CoV-2 has been suggested as an epidemiological indicator of community infection dynamics and disease prevalence. We report wastewater viral RNA levels of SARS-CoV-2 in a major metropolis serving over 3.6 million people geographically spread over 39 distinct sampling sites. Viral RNA levels were followed weekly for 22 weeks, both before, during, and after a major surge in cases, and simultaneously by two independent laboratories. We found SARS-CoV-2 RNA wastewater levels were a strong predictive indicator of trends in the nasal positivity rate two-weeks in advance. Furthermore, wastewater viral RNA loads demonstrated robust tracking of positivity rate for populations served by individual treatment plants, findings which were used in real-time to make public health interventions, including deployment of testing and education strike teams.

9.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.07.27.223495

ABSTRACT

The newly emerged and rapidly spreading SARS-CoV-2 causes coronavirus disease 2019 (COVID-19). To facilitate a deeper understanding of the viral biology we developed a capture sequencing methodology to generate SARS-CoV-2 genomic and transcriptome sequences from infected patients. We utilized an oligonucleotide probe-set representing the full-length genome to obtain both genomic and transcriptome (subgenomic open reading frames [ORFs]) sequences from 45 SARS-CoV-2 clinical samples with varying viral titers. For samples with higher viral loads (cycle threshold value under 33, based on the CDC qPCR assay) complete genomes were generated. Analysis of junction reads revealed regions of differential transcriptional activity and provided evidence of expression of ORF10. Heterogeneous allelic frequencies along the 20kb ORF1ab gene suggested the presence of a defective interfering viral RNA species subpopulation in one sample. The associated workflow is straightforward, and hybridization-based capture offers an effective and scalable approach for sequencing SARS-CoV-2 from patient samples.


Subject(s)
COVID-19 , Infections
SELECTION OF CITATIONS
SEARCH DETAIL